
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 397
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

High Speed Adaptive Binary Arithmetic Coder
used in SPIHT

Smitha Mariam Chacko

Abstract-The CABAC design is based on the key elements of binarization, context modeling, and binary arithmetic coding. Binarization
makes efficient binary arithmetic coding via a unique mapping of nonbinary syntax elements to a sequence of bits, which are called bins.
Each bin can either be processed in the regular coding mode or the bypass mode. The latter is chosen for selected bins in order to allow a
speedup of the whole encoding process means of simplified non adaptive coding benefit, where a bin may be context modeled and
subsequently arithmetic encoded. A pipeline register is inserted between context memory and the binary arithmetic decoder to reduce the
critical path of the loop. The speed of the SPIHT algorithm is increased by using CABAC then using Arithmetic Coder. The Coding is done
in VHDL language and synthesized using Xilinx ISE 13.2 and simulated using ISim. As a design decision, the speed of the SPIHT algorithm
is increased by using CABAC than using Arithmetic Coder.

Index Terms- Arithmetic coding, context model, Set Partitioning In Hierarchical Trees, CABAC, syntax elements, binarization, bin.

—————————— ——————————

1 INTRODUCTION
mage compression is an application of image processing
performed on digital images. The main objective of image
compression is to reduce the redundancy of the image data

in order to be able to store or transmit data in an efficient
form. Generally a compression system consists of encoder and
decoder stages. An arithmetic coder could be used as symbol
encoders. Arithmetic coding (AC) method can obtain optimal
performance for its ability to generate codes with fractional
bits and it is widely used by various image compression algo-
rithms. Arithmetic coding makes itself a standard technique
for its high efficiency.
 In recent times, the SPIHT with list algorithm has become
more popular in image compression techniques. SPIHT with
lists algorithm uses three different lists to store significant in-
formation of wavelet coefficients for image coding purpose.
Three lists are the list of Insignificant Pixels (LIP), and list of
Significant Pixels (LSP). At first, SPIHT combines nodes of a
coefficient tree in wavelet domain and its successor nodes into
one set which is denoted as insignificant. With travelling each
tree node, sets in the LIS are partitioned into four different
subsets and these are tested for significant state.

2 LITERATURE REVIEW
For the QM coder in JPEG, Andra’s [1] gave a new architecture
which decreases operation for the more probable symbol
(MPS) and used a non-overlap window style for the speedup
purpose. In [1], the probability interval partition’s accelerated
by exchange of the less probable symbol (LPS) interval with
the MPS interval. Thus the amount of operations is reduced by
60% to 70% compared with other coders. Another highlight of
[1] is the nonoverlap window that is applied to the continuous
MPS in order to simplify renormalization operation. Due to
simple operations in Andra’s order the performance is slightly
lowered by 1% - 3%.

————————————————
• Smitha Mariam Chacko is currently pursuing masters degree program in em-

bedded systems in Sree Buddha College of Engineering,Kerala, India,E-mail:
smitha.rene@gmail.com

 Wheeler [2] proposed a modified SPIHT algorithm which
does not use list. Because of no insert and search operations
for list, the speed of algorithm can be improved greatly.
 Wiseman [3] proposed systolic hardware architecture for a
quasi AC which is a simple version of AC. In [3] the AC uses a
pipeline processing to compute each stage, which eliminates
an internal high frequency clock and utilizes fast lookup table
for state transitions. Although the architecture can improve
the speed of the internal operations, such as the probability
internal update and cumulative calculations, it cannot offer
supports for multi-context processing in image compression
fields.
 Marpe [4] proposed that by combining adaptive binary
arithmetic coding technique with context modeling, a high
degree of adaptation and redundancy reduction is achieved.
The CABAC framework also includes a novel low- complexity
method for binary arithmetic coding and probability estima-
tion that is suited for efficient hardware and software imple-
mentations.
 Taubman[5] proposed a new image compression al-
gorithm, based on independent Embedded Block Coding with
Optimized Truncation of the embedded bit streams (EBCOT).
The algorithm exhibits state-of-the-art compression perfor-
mance while producing a bit-stream with a set of features,
including resolution and SNR scalability. The algorithm has
modest complexity and is suitable for applications involving
remote browsing of large compressed images. The algorithm
lends itself to optimization with respect to MSE as well as
more realistic metrics, capable of modeling the spatially vary-
ing visual masking phenomenon.
 Jyotheshwar[6] proposed an implementation of the
image compression technique of SPIHT in programmable
hardware. The lifting based DWT architecture has been select-
ed for exploiting the correlation among the image pixels. In
addition, he provided a study on what storage elements are
required for the wavelet coefficients.
 In SPIHT algorithm aspect, many researchers pro-
posed various modifications to improve performance of

I

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 398
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

SPIHT. Some algorithms aim for better PSNR values. Kas-
sim[7] introduced a method for selecting an optimal wavelet
packet transform basis for SPIHT, which efficiently compacts
the high frequency sub band energy into a few trees as possi-
ble and avoids parental conflicts. Their proposed SPIHT-WPT
coder achieved improved coding gains for highly textured
images.
 Inorder to reduce memory and speed up SPIHT soft-
ware, Akter[8] used one list to store the coordinates of wavelet
coefficients instead of three lists of SPIHT and merged the
sorting pass and the refinement pass together as one scan
pass.
 Ansari[9], proposed Context-Based SPIHT(CSPIHT)
method, which used a segmentation and interactive method
for selecting the contextual region of interest mask to achieve a
better performance results in medical images.
 Mohanty[10], presented a novel extension technique
to SPIHT base image compression with spatial scalability. The
preprocessing techniques provide significantly better quality
reconstruction at the decoder with little computational com-
plexity. There are two proposals for this paper. Firstly, a pre-
processing scheme called Zero-Shifting, that brings the spatial
values in signed integer range without changing the dynamic
ranges, so that transformed coefficients calculation becomes
more consistent. Secondly, the idea to facilitate resolution
scalable decoding by rearranging the order of encoded output
bit stream has been incorporated. During the sorting pass of
the SPIHT algorithm, he had modeled the transformed coeffi-
cient based on the probability of significance, at a fixed
threshold of the offspring.
 A high throughput memory efficient arithmetic coder
architecture for the SPIHT image compression based on a
simple context model had been proposed by Kai Liu[11]. The
architecture benefits from various optimizations performed at
different levels of arithmetic coding. The simple context model
results in a regular access pattern during reading the wavelet
transform coefficients. In order to avoid rescanning the wave-
let transform coefficients a BFS-SPIHT without lists algorithm
is used.

3 PROPOSED METHOD
3.1 Wavelet Transform
Two dimensional wavelet transform decomposes airspace
domain image to frequency domain through multi-resolution
decomposition, and can continue the multi resolution decom-
position of the low frequency data after decomposition. A two
dimensional wavelet transform transforms results decompose
the image into four sub hands respectively named LL1, LH1,
HL1 and HH1. The second change only further decomposes
the low frequency sub image LL1 to four sub images: LL2,
LH2, HL2 and HH2.
 There is a strong geometrical similarity among the
sub images, especially among the sub images of the same di-
rection. The sub image is similar to the original image in ge-
ometry, so further coding can be proceeded according to its
characteristic. It can continually restore the superior low fre-
quency sub-band data by the decomposed low frequency sub-
band data and the high frequency sub-band data, it can also
restore the original image through the reconstruction process.

 In the usual wavelet transform, the wavelet transform
coefficient is floating point type, so when coding the image of
wavelet transform domain, the first step is to change the
wavelet transform coefficient into integer and then quantify it.
The above process will cause the data distortion and make the
data quantified not suitable for the nondestructive compres-
sion of image. It can be solved by the reversible wavelet trans-
form through proper lifting scheme based on integer number-
integer number reversible transformation.

Fig1: Travel order of BFS in SPIHT [11]

Fig2: CABAC Framework

3.2 SPIHT Algorithm
Wavelet Transform make most of the energy of image trans-
form domain coefficient focuses on the low frequency sub-
band, combining with the data in high frequency sub-band to
form a series of zerotree. SPIHT algorithm shows the relation-
ship between different sub-band through the data quad tree
structure, using the characteristics of the wavelet coefficient
and position relations. It continually plots the set of the im-
portant coefficients in the offspring and divides the children
nodes into important pixels and not important pixels through
scanning and form a new division to set with the offspring of

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 399
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

the non-children nodes. When there is no important pixels in
offspring of some nodes in unimportant pixel set, use a single
bit of data 0 to express the offspring.
 As shown in figure 1, single bit data can be used to
express some pixel set, and the quadtree structure reflects the
position relationship among pixel, therefore, image can get
higher compression ratio through SPIHT algorithm. SPIHT
algorithm finally causes a series of binary coding sequence
expressing the sign of the pixels and whether the pixels are
important or not. It shows that wavelet transform makes ener-
gy focuses on the low frequency sub-band, which makes the
probability increase greatly that the quad tree father node co-
efficient is bigger than its offspring. It is more advantageous to
the decomposition of the unimportant pixel set in SPIHT algo-
rithm, so as to enhance the efficiency of the SPIHT algorithm.

3.3 CABAC Algorithm
 After transformation, quantitative processing and
some other process, usually last step is entropy coding. Entro-
py coding is a kind of lossless information to compress data.
Figure 2 shows the CABAC framework. CABAC realizes loss-
less compression by establishing corresponding relationship
between source symbols and code word according to the dis-
tribution character of the probability of the source symbols.
Based on the analysis of the coding process of CABAC algo-
rithm, the first step is the process the input syntax elements to
binary digit sequence, mapping the input symbols as the bina-
ry code sequence consisting of “0” and “1” second is the in-
troduction of probability conditionally to encode symbols as
the binary code sequence consisting of “0” and “1”. Second is
the introduction of probability conditionally to encode sym-
bols through context modeling. Then adaptively update the
probability distribution of the symbols once again and even-
tually arithmetic coding the generated binary coding sequence
according to the probability distribution.
 Here the kth order Exp-Golomb Binarization Scheme
is used. Exponential Golomb codes were first proposed by
Teuhola in the context of run-length coding schemes. This pa-
rameterized family of codes is a derivative of Golomb codes,
which have been proven to be optimal prefix-free codes for
geometrically distributed sources. Exp-Golomb codes are con-
structed by a concatenation of a prefix and a suffix code word.
The prefix part of the EGk code word consists of a unary code
corresponding to the value of l(x) = [log2 (x/2k + 1)]. The EGk
suffix part is computed as the binary representation of x + 2k(1
-2l(x)) using k + l(x) significant bits. Consequently, for the EGk
binarization, the number of symbols having the same code
length of is geometrically growing.
 The input signals can be divided into two categories
i.e., the context related and the control related. When the con-
text label and binary code symbol arrive, the context switch
differentiates the input context and sends the context value to
the context dispatcher by different paths. The main task of the
context dispatcher is to schedule the order of the input con-
texts, which are sent to different calculation cores. In order for
speed up, the context dispatcher can emit the context values to
each core by a disorder, which means that execution order can
be different from that of input. A small buffer for context val-
ue is set in the context dispatcher to implement reorganizing

the processing order. Table 1 shows an example of execution
using twelve different contexts. Each of four coding cores has
its state register to indicate whether the coding core can re-
ceive new context. When there is no context in the buffer, the
state is set to be idle. If a context symbol arrives, the state of
core is set to the context label to block any new context. The
dispatcher checks the states to find if there is an idle core.
Then the dispatcher combines several contexts and emits them
to the corresponding cores. The context and its binary symbol
are emitted to the corresponding calculation cores i.e., FC core,
FSign core, FD core and FL core through the internal bus. If
the incoming context is blocked, it will be delayed in the dis-
patcher and wait for the next clock cycle to be emitted. At the
beginning, four cores are ready for processing the contexts.
Then in the first clock cycle, four contexts are emitted simulta-
neously. In the second clock cycle, two new contexts arrive. As
(FD0, D0) context pair is not finished, context pair (FD1, D1) is
blocked. Only (FC1, D1) context pair can be emitted to the FC
core because (FC0,D0) has been done by the FC core. But in
the third clock cycle, (FD1,D1) context pair can be emitted to
the FD core because the FD core is ready to process new pair.
 Binary Arithmetic Coding performs arithmetic coding
of each bin based on bin value, type, and the corresponding
context model of the bin. BAC is a recursive procedure of cod-
ing interval subdivision and selection. Because Range and
Low of coding interval are represented by finite number of
bits (9 bits for Range).

Fig3: Context Modeling [11]

It is necessary to renormalize (scale up) the interval to prevent
precision degradation, and the upper bits of Low are output as
coded bits during renormalization. The coding interval of
(Low, Low + Range) is renormalized when Range is smaller
than the threshold value 256 (0x100), which is 1/4 of the max-
imum range of coding interval renormalization of Range and
Low is an iterative procedure, and the maximum number of
iterations is 6, as the smallest possible value of Range is 6. For
the processing of carry propagation and output of coding bits,
the coded bits of CABAC are not output until it is confirmed
that further carry propagation will not influence bit values.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 400
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

When interval length (Range) is smaller than the threshold
0x100, one bit can be output if the interval is located within the
top half [0x200, 0x400) or bottom half [0, 0x200) of the maxi-
mum coding range.
 Arithmetic coding consists of the iterative division of
an interval according to the probability of the different sym-
bols. CABAC implements a binary coder, a particular case that
allows substantial complexity reduction with high compres-
sion efficiency. More specifically, CABAC’s arithmetic coder is
related to the Q-coder family. By calling low and range to the
lower point and the length of the current interval, the encod-
ing equations are: MPS:
lownew = low
rangenew = range − rLPS
LPS:
lownew = low + range − rLPS
rangenew = rLPS
Fig5 shows the flow of CABAC. Firstly, encoding iteration
needs the value of rLPS, which is read from memory. rLPS
memory address depends on the value of range. It is possible,
however, to remove this dependence as only 2 bits from range
are used for addressing rLPS. Thus rLPS can be addressed
using 6 bits from the state of current context. As a result, four
different values of rLPS are obtained. These values are latched.
Then the right value of rLPS is selected based on the value of
range.

Table1: Example of Out of Order Execution

Fig4: Design flow of CABAC

Encoding is different depending on whether the symbol is

the Most or the Least Probable Symbol for the current encod-
ing context. The conversion to MPS/LPS is performed during
context managing. For equally-probable symbols this conver-
sion is not necessary. Then, interval normalization is applied.
As a result, a variable amount of bits is produced every cycle
ranging from 0 to 8. At this point, data dependence ends. The
new values of low and range are now normalized and a new
iteration can start. Normalization is performed in a single step
by using Leading-Zero Detection and barrel-shifters.

3.4 CABAC USED IN SPIHT
After coding by SPIHT algorithm based on wavelet transform,
image data changes to a bunch of binary codes which is very
fit to perform arithmetic coding. At the same time CABAC is
one of the high powered arithmetic coding algorithms. The
essential problem is to binary transform source data. There-
fore, it could be realized further compression by continually
carrying out CABAC algorithm to the coding sequence com-
ing from SPIHT algorithm based on wavelet transform (fig5).
And it will save the cost of binary transformation to source
data in CABAC algorithm.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 401
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig5: Block diagram of CABAC in SPIHT

In fig6 the CABAC decoding process is divided into two stag-
es. Context selection and memory read is done in stage 1 while
binary arithmetic decoding is done in stage 2. When the binary
arithmetic decoder decodes the current bin, the context mod-
eler fetches the probability the models used for the next bin.
Here an iteration of bin decode is done in one cycle, where the
CABAC performs context selection and binary arithmetic cod-
ing. A pipeline register is inserted between the context
memory and the binary arithmetic coder to reduce the critical
path of the loop.

Fig6: Block Diagram of pipelined CABAC

4 SIMULATION RESULTS
In fig7, the input is inData .And the coded output is obtained
from bits_to_go.

Fig7: Waveform of Arithmetic Coder

In Figure 8, the indata is the input and the coded output is
obtained from codeword

Fig8: Waveform of Arithmetic Coder in SPIHT

The fig9 and fig10 shows the simulation results of CABAC and
CABAC used in SPIHT respectively. The inputs are given and
the coded outputs are obtained.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 402
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig9: Waveform of CABAC

Fig10: Waveform of CABAC in SPIHT

Table 2: Comparison Table of AC and CABAC in SPIHT

The selected device is 4vfx12sf363-12. Both CABAC and
Arithmetic Coder had been synthesized with Vertex 4. From
the table 2, the delay of CABAC is less than the delay of
Arithmetic Coder. Therefore, the speed of CABAC is greater
than that of Arithmetic Coder.

5 CONCLUSION
Arithmetic coding makes itself a standard technique for its

high efficiency. For improvement of throughput purpose, high
speed architecture of AC used in SPIHT without lists algo-
rithm is proposed. In the architecture, a simple context scheme
is used first to reduce the memory size.

The CABAC design is based on the key elements of binari-
zation, context modeling, and binary arithmetic coding. Bina-
rization enables efficient binary arithmetic coding via a unique
mapping of nonbinary syntax elements to a sequence of bits,
which are called bins. Each bin can either be processed in the
regular coding mode or the bypass mode. The latter is chosen
for selected bins in order to allow a speedup of the whole en-
coding (and decoding) process by means of a simplified non-
adaptive coding engine without the usage of probability esti-
mation. The regular coding mode provides the actual coding
benefit, where a bin may be context modeled and subsequent-
ly arithmetic encoded. CABAC is one of the high powered
arithmetic coding algorithm, which the essential problem is to
binary transform source data. Therefore, further compression
can be achieved by continually carrying out CABAC algorithm
to the coding sequence coming from SPIHT algorithm based
on wavelet transform. A pipeline register is inserted between
context memory and the binary arithmetic decoder to reduce
the critical path of the loop. The speed of the SPIHT algorithm
is increased by using CABAC than using Arithmetic Coder.
The coding is done in VHDL language and synthesized using
Xilinx ISE 13.2 and simulated using ISim. The CABAC has a
very sequential algorithm to decode the incoming bitstream.
But because every slice is independently decoded, this can be
done in a massive parallel way. Multicore parallelism can be
used to speedup the decoding.

References

[1] K. Andra, T. Acharya, and C. Chakrabarti, “A multi-bit binary arithme-
tic coding technique,” in Proc. Int. Conf. Image Process., Vancouver,
BC, Canada, vol. 1, pp. 928–931 , Sep2000.

[2] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression without
lists,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Istan-
bul, Turkey, , pp. 2047–2050, Jun. 2000.

[3] Y. Wiseman, “A pipeline chip for quasi arithmetic coding,” IEICE Trans.
Fundamentals, vol. E84-A, no. 4, pp. 1034–1041, Apr. 2001.

[4] Detlev Marpe,, Heiko Schwarz, and Thomas Wiegand, “Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression
Standard,” IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 7, pp. 620-636, July 2003.

[5] M. Dyer, D. Taubman, and S. Nooshabadi, “Concurrency techniques for
arithmetic coding in JPEG2000,” IEEE Trans. Circuits Systems I, Reg.
Papers, vol. 53, no. 6, pp. 1203–1213, Jun. 2006.

[6] J. Jyotheswar and S. Mahapatra, “Efficient FPGA implementation of
DWT and modified SPIHT for lossless image compression,” J. Syst. Arch.,
vol. 53, no. 7, pp. 369–378, Jul. 2007.

[7] A. A. Kassim, N. Yan, and D. Zonoobi, “Wavelet packet transform basis
selection method for set partitioning in hierarchical trees,” J. Electron.
Imag., vol. 17, no. 3, p. 033007, Jul. 2008.

[8] M. Akter, M. B. I. Reaz, F. Mohd-Yasin, and F. Choong, “A modified-
set partitioning in hierarchical trees algorithm for real-time image compres-
sion,” J. Commun. Technol. Electron., vol. 53, no. 6, pp. 642–650, Jun.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 403
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2008.
[9] M. A. Ansari and R. S. Ananda, “Context based medical image compres-

sion for ultrasound images with contextual set partitioning in hierarchical
trees algorithm,” Adv. Eng. Softw., vol. 40, no. 7, pp. 487–496, Jul.
2009.

[10] Bibhuprasad Mohanty, Abhishek Singh & Sudipta Mahapatra, “A
High Performance Modified SPIHT for Scalable Image Compression,” In-
ternational Journal of Image processing (IJIP), Volume (5) : Issue (4) :
pp.390-402 , 2011.

[11] Kai Liu Xi''an, Belyaev, E. Jie Guo,“VLSI Architecture of Arithmetic
Coder Used in SPIHT”, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, Volume:20 , Page(s): 697- 710, 2012 .

http://www.ijser.org/

	1 INTRODUCTION
	2 LITERATURE REVIEW
	3.1 Wavelet Transform
	3.2 SPIHT Algorithm
	3.3 CABAC Algorithm

	3.4 CABAC used in SPIHT
	4 SIMULATION RESULTS
	5 CONCLUSION

